光纤—薄膜型粗波分复用器件制备技术研究


  作者简介: 徐进(1988),男,江苏盐城人,硕士研究生,主要从事集成光学和波分复用器件等方面的研究。
  摘要: 实验研究了一种低成本的聚合物粘结剂固化封口的、光路不含胶的粗波分复用(CWDM)器件的制备技术,器件大量用于CWDM系统中,为了满足其对波分的各种技术指标要求,基于自动调芯仪的高精度结构微调,以及EMI3410固化胶的高热稳定性和低成本,讨论了工艺过程中涉及的在线监测的光路调节方法、元器件固定方法、湿气隔离手段等。采用了独到的对称填充石英纤维的技术,有效改善了器件的抗高低温冲击特性。实验中采用全玻璃全胶工艺所制备样品,其光学特性数据达到行业指标,并通过了可靠性试验。
  关键词: 光纤光学; 粗波分复用; 薄膜滤波器; 波分复用技术
  中图分类号: TN 929.11文献标识码: Adoi: 10.3969/j.issn.1005
  引言波分复用(wavelength division multiplexing,WDM)是在一根光纤上同时传输不同波长的光信号,各个光信号在光纤中独立传输,从而成倍扩大光纤的通信容量[1]。波分复用分为密集波分复用(dense wavelength division multiplexing,DWDM)和粗波分复用(coarse wavelength division multiplexing,CWDM)两类,DWDM主要用于长途传输的高速核心骨干网,CWDM用于短途、低速率的接入网或城域网[2]。DWDM通常采用光波导列阵光栅(arrayedwaveguide grating,AWG)器件来实现[3],波长间隔在0.8 nm以下,对光波频率的稳定性要求很高,一般采用温度调谐。常规CWDM采用薄膜干涉的原理,波长间隔是20 nm,采用非温控激光,波长漂移允许超过1 nm[45]。用于光通信网络的CWDM器件必须通过温度85 ℃、湿度85%的环境试验,常规的方法是采用金属焊接来封口[6],制备工艺复杂,成本高。为此,本工作实验研究低成本的聚合物粘结剂固化封口的CWDM器件的制备技术[78],器件光路不含胶,关键工艺涉及在线光路调节方法、元器件固定方法、抗高低温冲击的手段、湿气隔离手段、光学特性指标的控制等,其中在改善器件抗高低温冲击的手段方面,采用了独到的对称布置石英纤维的新方法。1器件结构和工作原理实验制备的全胶型两波长CWDM器件结构如图1所示,器件由双纤准直器、分波器和单芯准直器构成,采用玻璃管封装。双纤准直器和分波器由双芯尾纤、G透镜、薄膜滤波片和小玻璃套管4个元件组成。单纤准直器由单芯尾纤、C透镜、小玻璃套管3个元件组成。光波从公共端输入,经G透镜准直后入射到薄膜滤波片,波长λ2发生反射,会聚于反射光纤,从反射端出射;波长λ1发生透射,经C透镜后会聚于透射光纤,从透射端出射,两支波长的间隔Δλ=20 nm。为了减少同轴回波,G透镜的一端和C透镜的一端均为8°斜面。
  分波器采用了全介质多层薄膜干涉滤光片,原理结构见图2,在间隔层的两侧各有一组多层高反膜系,构成一个等效的法布里-珀罗干涉结构。多层高反膜系由两种不同折射率的介质薄膜交替涂覆构成,每层薄膜的光学厚度都是 λ0/4,波长为λ0的光波的反射光在该膜系中具有干涉增强的效果。法布里-珀罗干涉的通带宽度Δλ与高反膜系的反射率成反比,而多层高反膜系的反射率与膜层数量成正比,提高膜层数量可以形成窄带滤波。用于CWDM的滤波片一般只需50~100层薄膜,而DWDM的滤波片需要200层左右的薄膜[910]。滤光片中心波长λc与光波入射角θ有λc=λ01-Csin2θ的关系,这里C是一个与滤波片有关的常数,因此组装工艺中控制入射角是一个重要环节。薄膜滤波片通常不能达到100%的透射和反射,透射光中含有部分其他波长的信号,反射光中也会掺入部分本应透射的光信号,这些掺入波长构成窜扰。CWDM要求窜扰光的损耗大于25 dB。2器件制备和特性测试
  2.1双纤尾纤和单纤尾纤结构的制备双纤尾纤结构由双芯毛细管和两根光纤组成,双芯毛细管采用天谷阳公司的产品,构造如图3所示,左边是横截面图,右边是纵截面图。毛细管外径是1.8 mm,通孔截面呈两侧半圆弧扁平状,高度是127 mm,中心宽度是252 mm,插入端开成喇叭口。两根外径为125 mm的单模洁净裸光纤从喇叭口并行插入毛细管,直至末端伸出,然后利用毛细管效应从端口注入粘结剂,在70 ℃下,进行4 h热固化定型,两根光纤之间的纤芯距约为127 μm。此后末端做8°斜面研磨抛光。单纤尾纤结构的制备方法与双纤尾纤的基本相同,毛细管通孔截面为圆形。
  2.2单纤准直器的制备单纤准直器由细径玻璃套管、C透镜和上述制备的单纤尾纤结构组成。外径和内径分别为2.78 mm和1.81 mm的细径玻璃套管采用天阳谷公司的产品,C透镜采用伟钊光学公司的产品,直径是1.8 mm,1 550 nm中心波长下的焦距是1.61 mm。将细径玻璃套管、C透镜和单芯尾纤结构用无水乙醇超声清洗,用氮气吹干。先将单纤尾纤结构插入细径玻璃套管内,细径玻璃套管入口端与单芯尾纤结构的插入端对齐,用ND353胶将细径玻璃套管与单纤尾纤结构粘结,在90 ℃温度下烘烤40 min,达到充分固化。然后从细径玻璃套管的另一端插入C透镜,直至C透镜斜面端与单纤尾纤结构的斜面端平行贴紧为止。光路准直调焦在1 530 nm工作波长下进行,单纤尾纤与一个调节辅助用的1×2单模光纤Y分支耦合器的单口光纤熔融对接,1×2光纤Y分支耦合器双口端的两根尾纤分别与1 530 nm光源和光功率计连接。在C透镜前部放置一个平面反射镜,由C透镜出射的1 530 nm光波经平面反射镜反射后原路返回,由光功率计监测返回光波的功率值。在此状态下,调节C透镜斜面端与单纤尾纤结构斜面端的间距,直至返回光波的功率值达到最大为止,用紫外固化胶粘结固定,并拆除辅助用光纤Y分支耦合器。

推荐访问:制备 薄膜 光纤 技术研究 器件